‘기하학원론’은 인류 역사상 가장 중요한 수학책으로 꼽힌다. 2000년 넘게 지식인이라면 누구나 읽어야 했다. 유클리드 사후 700여 년이 지나 로마의 지식인들이 모인 자리에서 한 철학자가 주어진 직선으로 정삼각형을 그리는 법에 대해 물었다. 참석자들은 한결같이 ‘기하학원론’의 제1 명제를 들었다. 내용을 제대로 이해하고 있음을 서로 확인한 참석자들은 모두 흡족한 표정을 지으며 이 같은 문화적 특성을 만들어준 이 책을 그리스어로 논평하는 걸 즐겼다고 한다.
세상과 역사를 바꾼 아이작 뉴턴의 걸작 ‘프린키피아’는 유클리드 기하학을 기반으로 탄생했다. 뉴턴이 ‘프린키피아’를 쓸 때도 ‘기하학원론’과 똑같이 13권의 구성 체제를 따랐다. 만유인력의 법칙을 발견한 뉴턴은 유클리드 기하학의 언어로 자신의 사상을 표현하고 자신의 체계나 방법은 가능한 한 드러내지 않으려 했다는 얘기도 전해온다.
상대성이론을 정립한 알베르트 아인슈타인의 말은 이 책의 영향력을 방증한다. “내 인생에 가장 큰 영향을 미친 사건은 열두 살 때 유클리드 기하학 교과서를 배운 일이다. 만약 여러분이 어렸을 때 유클리드를 읽고 학구열이 솟구치지 않았다면 여러분은 타고난 과학자가 아니다.” 아인슈타인은 중국에서 근대 과학이 발전하지 못한 까닭을 그의 친구에게 쓴 편지에서 밝혔다. “과거 중국에 유클리드 기하학과 실험적인 방법이 결여돼 있었다는 것이 근대 과학의 탄생을 막는 가장 큰 원인이다.”
버트런드 러셀도 흡사했다. “나는 열한 살 때 형에게 유클리드 기하학을 배웠다. 이는 내 일생일대의 대사건이었다. 마치 첫사랑을 하듯 여기에 빠져들었다.”
에이브러햄 링컨 전 미국 대통령은 말 안장 주머니에 항상 유클리드 책을 넣고 다니며 밤늦도록 등불 곁에서 이 책으로 공부했다. 그는 훗날 이렇게 털어놨다. “증명이 무엇을 의미하는지 이해하지 못했다면 결코 변호사가 될 수 없을 것이다.”
이 책의 공리를 바탕으로 한 증명은 미국 독립선언서로 이어졌다고 한다. 독립선언서는 ‘모든 사람은 평등하게 태어났다’로 시작해 ‘영국으로부터 독립해야 한다’는 결론을 도출했다.
기하학과 동의보감
루소는 이 책의 영향을 받아 자연주의 교육 사상과 서양 교육에 획기적인 전환의 바탕을 다졌다. 미국 경제학자 케네스 애로는 이 책의 공리적 방식에 따라 공정한 선거제도에 필요한 준거들을 일일이 찾아냈다. 청나라 황제 강희는 ‘기하학원론’ 만주어판으로 기하학을 배웠는데, 이 책을 싼 겉표지가 허준의 ‘동의보감’이었다는 재미있는 얘기도 전해온다.
네덜란드 수학자 루카스 번트는 “1482년 베네치아에서 처음 인쇄본이 나온 ‘기하학원론’은 이후 1000쇄 이상 발간돼 1900년대까지 서구 문명에서 성경 다음으로 많이 보급된 책”이라고 말했다. 이처럼 기하학에서 경전의 지위를 누리는 이 책은 유클리드와 기하학의 동의어로 통용된다. 현재 전 세계 기하학 교과서의 내용은 이 책을 재구성한 것이나 다름없다. 우리나라도 초·중·고교에서 배우는 도형 모두가 유클리드 기하학이다.
19세기 중반 비(非)유클리드 기하학이 등장하면서 절대적인 지위가 흔들리기 시작했으나 여전히 진리이고 영향력은 막강하다. ‘평행하지 않은 두 직선은 무한히 늘일 경우 반드시 한 점에서 만난다’는 유클리드의 생각과 달리 비유클리드 기하학은 ‘곡면 상에서는 여러 개의 점에서 만날 수 있다’는 걸 보여줬다. 곡면이나 휘어진 공간 등의 도형을 탐구하는 비유클리드 기하학은 ‘직선 밖의 한 점을 지나 이 직선에 평행한 직선이 두 개 이상 그어질 수 있다’고 가정해도 모순 없는 기하학이 성립한다는 것을 증명할 수 있다.
유클리드가 활동하던 시대부터 전해지는 ‘기하학원론’ 원본은 현존하지 않는다. 현대적인 모든 개정본은 알렉산드리아의 테온이 편집한 개정본에 근거를 두고 있다. 테온은 유클리드보다 700년 뒤에 살았던 인물이다. 유클리드가 기하학을 가르칠 때 사용하던 막대는 아직 박물관에 보존되고 있다고 한다.